Complete pairs of coanalytic sets

H. Michalewski

Institute of Mathematics University of Warsaw

Winter School, Hejnice 2009

< □ > < 同 >

Summary

- 1 Borel, analytic and coanalytic sets
- 2 Definition of a complete pair
- Basic examples of complete pairs
- A complete pair in the space of continuous functions
- 5 A complete pair in the theory of automata

▲ 伺 ▶ ▲ 三 ▶

Summary

- 1 Borel, analytic and coanalytic sets
- 2 Definition of a complete pair
- Basic examples of complete pairs
- A complete pair in the space of continuous functions
- 5 A complete pair in the theory of automata

(日)

Summary

- 1 Borel, analytic and coanalytic sets
- 2 Definition of a complete pair
- 3 Basic examples of complete pairs
- A complete pair in the space of continuous functions
- 5 A complete pair in the theory of automata

Summary

- 1 Borel, analytic and coanalytic sets
- 2 Definition of a complete pair
- 3 Basic examples of complete pairs
- 4 A complete pair in the space of continuous functions
- 5 A complete pair in the theory of automata

Summary

- 1 Borel, analytic and coanalytic sets
- 2 Definition of a complete pair
- 3 Basic examples of complete pairs
- 4 A complete pair in the space of continuous functions
- 5 A complete pair in the theory of automata

Definition of a complete pair Basic examples of complete pairs A complete pair in the space of continuous functions A complete pair in the theory of automata

Definition

X is a **Polish space** if *X* is separable and completely metrizable.

Cantor set C, the reals \mathbb{R} , the naturals \mathbb{N} , the Banach space C([0, 1]) with $\|\cdot\|_{\infty}$ are all examples of Polish spaces.

(日)

Definition of a complete pair Basic examples of complete pairs A complete pair in the space of continuous functions A complete pair in the theory of automata

Definition

X is a **Polish space** if *X* is separable and completely metrizable.

Cantor set \mathcal{C} , the reals \mathbb{R} , the naturals \mathbb{N} , the Banach space C([0, 1]) with $\|\cdot\|_{\infty}$ are all examples of Polish spaces.

< □ > < 同 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition of a complete pair Basic examples of complete pairs A complete pair in the space of continuous functions A complete pair in the theory of automata

Definition

The Borel sets $\mathcal{B}(X)$ *in a given topological space is the smallest* σ *-field containing all open sets of* X.

Image: A matched block of the second seco

Definition of a complete pair Basic examples of complete pairs A complete pair in the space of continuous functions A complete pair in the theory of automata

Definition

A set $A \subset X$ in a Polish space X is **analytic** if there exists a Polish space Y and a Borel set $B \subset X \times Y$ such that

$$A = \{x \in X : \exists y \in Y \ \langle x, y \rangle \in B\}.$$

Definition

A set $A \subset X$ in a Polish space X is **coanalytic** if $X \setminus A$ is an analytic set.

(日)

Definition of a complete pair Basic examples of complete pairs A complete pair in the space of continuous functions A complete pair in the theory of automata

Definition

A set $A \subset X$ in a Polish space X is **analytic** if there exists a Polish space Y and a Borel set $B \subset X \times Y$ such that

$$A = \{x \in X : \exists y \in Y \langle x, y \rangle \in B\}.$$

Definition

A set $A \subset X$ in a Polish space X is **coanalytic** if $X \setminus A$ is an analytic set.

Definition

A set A in a topological space A is **Wadge reducible** to a set B in a topological space Y if there exists a continuous mapping $\phi : X \to Y$ such that $A = \phi^{-1}[B]$.

Definition

A disjoint pair *A*, *B* in a topological space *X* is Wadge reducible to a disjoint *C*, *D* in a topological space *Y*, if there exists a continuous mapping $\phi : X \to Y$ such that $A \leq_{\phi} C$ and $B \leq_{\phi} D$, that is $A = \phi^{-1}[C]$ and $B = \phi^{-1}[D]$.

Definition

A set A in a topological space A is **Wadge reducible** to a set B in a topological space Y if there exists a continuous mapping $\phi : X \to Y$ such that $A = \phi^{-1}[B]$.

Definition

A disjoint pair *A*, *B* in a topological space *X* is Wadge reducible to a disjoint *C*, *D* in a topological space *Y*, if there exists a continuous mapping $\phi : X \to Y$ such that $A \leq_{\phi} C$ and $B \leq_{\phi} D$, that is $A = \phi^{-1}[C]$ and $B = \phi^{-1}[D]$.

Definition

A set A in a topological space A is **Wadge reducible** to a set B in a topological space Y if there exists a continuous mapping $\phi : X \to Y$ such that $A = \phi^{-1}[B]$.

Definition

A disjoint pair *A*, *B* in a topological space *X* is Wadge reducible to a disjoint *C*, *D* in a topological space *Y*, if there exists a continuous mapping $\phi : X \to Y$ such that $A \leq_{\phi} C$ and $B \leq_{\phi} D$, that is $A = \phi^{-1}[C]$ and $B = \phi^{-1}[D]$.

Definition

A set A in a topological space A is **Wadge reducible** to a set B in a topological space Y if there exists a continuous mapping $\phi : X \to Y$ such that $A = \phi^{-1}[B]$.

Definition

A disjoint pair *A*, *B* in a topological space *X* is Wadge reducible to a disjoint *C*, *D* in a topological space *Y*, if there exists a continuous mapping $\phi : X \to Y$ such that $A \leq_{\phi} C$ and $B \leq_{\phi} D$, that is $A = \phi^{-1}[C]$ and $B = \phi^{-1}[D]$.

Definition

A set A in a topological space A is **Wadge reducible** to a set B in a topological space Y if there exists a continuous mapping $\phi : X \to Y$ such that $A = \phi^{-1}[B]$.

Definition

A disjoint pair *A*, *B* in a topological space *X* is Wadge reducible to a disjoint *C*, *D* in a topological space *Y*, if there exists a continuous mapping $\phi : X \to Y$ such that $A \leq_{\phi} C$ and $B \leq_{\phi} D$, that is $A = \phi^{-1}[C]$ and $B = \phi^{-1}[D]$.

Definition

A disjoint pair of coanalytic sets C, D in a Polish space X is complete, if for every disjoint pair of coanalytic sets A, B in the Cantor set the pair A, B is Wadge reducible to the pair C, D.

The pair C, D represents all essential properties of pairs of coanalytic sets. For example, in the class of coanalytic sets there exists a pair A, B not separable by a Borel set. The same holds for all complete pairs.

Definition

A disjoint pair of coanalytic sets C, D in a Polish space X is **complete**, if for every disjoint pair of coanalytic sets A, B in the Cantor set the pair A, B is Wadge reducible to the pair C, D.

The pair C, D represents all essential properties of pairs of coanalytic sets. For example, in the class of coanalytic sets there exists a pair A, B not separable by a Borel set. The same holds for all complete pairs.

< □ > < 同 > < 回 >

Definition

A disjoint pair of coanalytic sets C, D in a Polish space X is complete, if for every disjoint pair of coanalytic sets A, B in the Cantor set the pair A, B is Wadge reducible to the pair C, D.

The pair C, D represents all essential properties of pairs of coanalytic sets. For example, in the class of coanalytic sets there exists a pair A, B not separable by a Borel set. The same holds for all complete pairs.

< □ > < 同 > < 回 >

Definition

A disjoint pair of coanalytic sets C, D in a Polish space X is complete, if for every disjoint pair of coanalytic sets A, B in the Cantor set the pair A, B is Wadge reducible to the pair C, D.

The pair C, D represents all essential properties of pairs of coanalytic sets. For example, in the class of coanalytic sets there exists a pair A, B not separable by a Borel set. The same holds for all complete pairs.

Definition

A disjoint pair of coanalytic sets C, D in a Polish space X is complete, if for every disjoint pair of coanalytic sets A, B in the Cantor set the pair A, B is Wadge reducible to the pair C, D.

The pair C, D represents all essential properties of pairs of coanalytic sets. For example, in the class of coanalytic sets there exists a pair A, B not separable by a Borel set. The same holds for all complete pairs.

In order to prove that a given disjoint pair *C*, *D* of coanalytic sets is complete, it is enough to find a complete pair *A*, *B* and a reduction ϕ such that $A \leq_{\phi} C$ and $B \leq_{\phi} D$.

Definition

 $T \subset \omega^{<\omega}$ is a **tree**, if *T* is closed with respect to initial segments, that is for every $s \in T$ and an initial segment $r \preceq s$ we have $r \in T$. A sequence $x \in \omega^{\omega}$ is a **branch** of *T*, if for every $n \in \omega$ we have $x|n \in T$.

Definition

 $T \subset \omega^{<\omega}$ is a **tree**, if *T* is closed with respect to initial segments, that is for every $s \in T$ and an initial segment $r \preceq s$ we have $r \in T$. A sequence $x \in \omega^{\omega}$ is a **branch** of *T*, if for every $n \in \omega$ we have $x|n \in T$.

Definition

Let $\text{Tr} \subset 2^{\omega^{<\omega}}$ be the set of all trees. We define WF as the set of all well-founded trees and UB as the set of all trees with exactly one branch.

J. Saint Raymond proved in 2007 that the pair WF, UB is a complete pair of coanalytic sets.

Definition

Let $\text{Tr} \subset 2^{\omega^{<\omega}}$ be the set of all trees. We define WF as the set of all well-founded trees and UB as the set of all trees with exactly one branch.

J. Saint Raymond proved in 2007 that the pair WF, UB is a complete pair of coanalytic sets.

Definition

Let $\text{Tr} \subset 2^{\omega^{<\omega}}$ be the set of all trees. We define WF as the set of all well-founded trees and UB as the set of all trees with exactly one branch.

J. Saint Raymond proved in 2007 that the pair WF, UB is a complete pair of coanalytic sets.

(日)

Definition

Let $\text{Tr} \subset 2^{\omega^{<\omega}}$ be the set of all trees. We define WF as the set of all well-founded trees and UB as the set of all trees with exactly one branch.

J. Saint Raymond proved in 2007 that the pair WF, UB is a complete pair of coanalytic sets.

< □ > < 同 >

Definition

Every tree $T \in WF$ admits a natural rank rk(T), which is an ordinal below ω_1 . Firstly we define inductively rank of T for every vertex of Tand then define rank of T as the rank of $\emptyset \in T$. If T is not in WF, we define rk(T) as ω_1 .

Definition

Every tree $T \in WF$ admits a natural rank rk(T), which is an ordinal

below ω_1 . Firstly we define inductively rank of T for every vertex of T and then define rank of T as the rank of $\emptyset \in T$. If T is not in WF, we define $\operatorname{rk}(T)$ as ω_1 .

Definition

Every tree $T \in WF$ admits a natural rank rk(T), which is an ordinal below ω_1 . Firstly we define inductively rank of T for every vertex of Tand then define rank of T as the rank of $\emptyset \in T$. If T is not in WF, we define rk(T) as ω_1 .

イロト イ押ト イヨト イヨト

Definition

Every tree $T \in WF$ admits a natural rank rk(T), which is an ordinal below ω_1 . Firstly we define inductively rank of T for every vertex of Tand then define rank of T as the rank of $\emptyset \in T$. If T is not in WF, we define rk(T) as ω_1 .

Definition

$V_0 = \{ \langle S, T \rangle : S \in WF, \ \mathrm{rk}(S) < \mathrm{rk}(T) \}$

and

Let

$V_1 = \{ \langle S, T \rangle : T \in WF, \ \operatorname{rk}(T) \leqslant \operatorname{rk}(S) \}.$

The sets V_0 i V_1 are disjoint and coanalytic and forms a complete pair.

Definition

Let

$$V_0 = \{ \langle S, T \rangle : S \in WF, \ \mathrm{rk}(S) < \mathrm{rk}(T) \}$$

and

$$V_1 = \{ \langle S, T \rangle : T \in WF, \ \mathrm{rk}(T) \leqslant \mathrm{rk}(S) \}.$$

The sets V_0 i V_1 are disjoint and coanalytic and forms a complete pair.

Definition

Let

$$V_0 = \{ \langle S, T \rangle : S \in WF, \ \mathrm{rk}(S) < \mathrm{rk}(T) \}$$

and

$$V_1 = \{ \langle S, T \rangle : T \in WF, \ \mathrm{rk}(T) \leqslant \mathrm{rk}(S) \}.$$

The sets V_0 i V_1 are disjoint and coanalytic and forms a complete pair.

(日)

Definition

We define Diff as a subset of C([0, 1]) consisting of all differentiable functions on the unit interval [0, 1].

In 1936 S. Mazurkiewicz proved that the set Diff is an coanalytic non–Borel subset C([0, 1]).

Definition

Let Diff_1 be the set of all functions in C([0, 1]) which are **not differentiable in exactly one point** of [0, 1].

The Mazurkiewicz's proof gives completeness of the pair Diff, Diff₁.

・ロト ・ 同ト ・ ヨト

Definition

We define Diff as a subset of C([0, 1]) consisting of all differentiable functions on the unit interval [0, 1].

In 1936 S. Mazurkiewicz proved that the set Diff is an coanalytic non–Borel subset C([0, 1]).

Definition

Let Diff_1 be the set of all functions in C([0, 1]) which are **not differentiable in exactly one point** of [0, 1].

The Mazurkiewicz's proof gives completeness of the pair Diff, Diff₁.

Definition

We define Diff as a subset of C([0, 1]) consisting of all differentiable functions on the unit interval [0, 1].

In 1936 S. Mazurkiewicz proved that the set Diff is an coanalytic non–Borel subset C([0, 1]).

Definition

Let Diff_1 be the set of all functions in C([0, 1]) which are **not differentiable in exactly one point** of [0, 1].

The Mazurkiewicz's proof gives completeness of the pair Diff, Diff₁.

Definition

We define Diff as a subset of C([0, 1]) consisting of all differentiable functions on the unit interval [0, 1].

In 1936 S. Mazurkiewicz proved that the set Diff is an coanalytic non–Borel subset C([0, 1]).

Definition

Let Diff₁ be the set of all functions in C([0, 1]) which are **not differentiable in exactly one point** of [0, 1].

The Mazurkiewicz's proof gives completeness of the pair Diff, Diff₁.

Let S be the set of all **full binary trees** with vertices **labeled** by elements of the set $\{\exists, \forall\} \times \{0, 1\}$. Let $t \in S$.

From a vertex of *t* one may go either right or left and the players \exists and \forall play a **game**, such that each of the players decides about a move from 'his' vertices, that is from vertices labeled by \exists and \forall respectively.

Let S be the set of all **full binary trees** with vertices **labeled** by elements of the set $\{\exists, \forall\} \times \{0, 1\}$. Let $t \in S$.

From a vertex of *t* one may go either right or left and the players \exists and \forall play a **game**, such that each of the players decides about a move from 'his' vertices, that is from vertices labeled by \exists and \forall respectively.

Let S be the set of all **full binary trees** with vertices **labeled** by elements of the set $\{\exists, \forall\} \times \{0, 1\}$. Let $t \in S$.

From a vertex of *t* one may go either right or left and the players \exists and \forall play a **game**, such that each of the players decides about a move from 'his' vertices, that is from vertices labeled by \exists and \forall respectively.

The player \exists wins, if all vertices occurring in a given play, with except of finitely many, have label 0. The player \forall wins, if all vertices occurring in a given play, with except of finitely many, has label 1.

The player \exists **wins**, if all vertices occurring in a given play, with except of finitely many, have label 0. **The player** \forall **wins**, if all vertices occurring in a given play, with except of finitely many, has label 1.

Definition

Let $W_{0,1}$ be the set of all trees in S, such that the **player** \exists has a winning strategy and $W'_{0,1}$ be the set of all trees in S, such that the player \forall has a winning strategy.

The pair $W_{0,1}$, $W'_{0,1}$ is a complete pair of coanalytic sets. Sz. Hummel proved in his Master Dissertation that the sets $W_{0,1}$, $W'_{0,1}$ are coanalytic and that the sets $W_{0,1}$, $W'_{0,1}$ are not separable by a Borel set. This results were incorporated into a joint paper by D. Niwiński, Sz. Hummel and H. Michalewski accepted for STACS 2009.

< □ > < 同 > < 三 > <

Definition

Let $W_{0,1}$ be the set of all trees in S, such that the **player** \exists has a winning strategy and $W'_{0,1}$ be the set of all trees in S, such that the **player** \forall has a winning strategy.

The pair $W_{0,1}$, $W'_{0,1}$ is a complete pair of coanalytic sets. Sz. Hummel proved in his Master Dissertation that the sets $W_{0,1}$, $W'_{0,1}$ are coanalytic and that the sets $W_{0,1}$, $W'_{0,1}$ are not separable by a Borel set. This results were incorporated into a joint paper by D. Niwiński, Sz. Hummel and H. Michalewski accepted for STACS 2009.

Definition

Let $W_{0,1}$ be the set of all trees in S, such that the **player** \exists has a winning strategy and $W'_{0,1}$ be the set of all trees in S, such that the **player** \forall has a winning strategy.

The pair $W_{0,1}$, $W'_{0,1}$ is a complete pair of coanalytic sets. Sz. Hummel proved in his Master Dissertation that the sets $W_{0,1}$, $W'_{0,1}$ are coanalytic and that the sets $W_{0,1}$, $W'_{0,1}$ are not separable by a Borel set. This results were incorporated into a joint paper by D. Niwiński, Sz. Hummel and H. Michalewski accepted for STACS 2009.

(日)

Definition

Let $W_{0,1}$ be the set of all trees in S, such that the **player** \exists has a winning strategy and $W'_{0,1}$ be the set of all trees in S, such that the **player** \forall has a winning strategy.

The pair $W_{0,1}$, $W'_{0,1}$ is a complete pair of coanalytic sets. Sz. Hummel proved in his Master Dissertation that the sets $W_{0,1}$, $W'_{0,1}$ are coanalytic and that the sets $W_{0,1}$, $W'_{0,1}$ are not separable by a Borel set. This results were incorporated into a joint paper by D. Niwiński, Sz. Hummel and H. Michalewski accepted for STACS 2009.

(日)

Definition

Let $W_{0,1}$ be the set of all trees in S, such that the **player** \exists has a winning strategy and $W'_{0,1}$ be the set of all trees in S, such that the **player** \forall has a winning strategy.

The pair $W_{0,1}$, $W'_{0,1}$ is a complete pair of coanalytic sets. Sz. Hummel proved in his Master Dissertation that the sets $W_{0,1}$, $W'_{0,1}$ are coanalytic and that the sets $W_{0,1}$, $W'_{0,1}$ are not separable by a Borel set. This results were incorporated into a joint paper by D. Niwiński, Sz. Hummel and H. Michalewski accepted for STACS 2009.

(日)

The set $W_{0,1}$ is an example of set accepted by a **non-deterministic** tree automaton. The automaton has the states 0, 1 and T, works over the **alphabet** $\{\exists, \forall\} \times \{0, 1\}$ and has the following transitions:

 $i \stackrel{\langle \forall j \rangle}{\rightarrow} j, j,$

$$i \stackrel{\langle \exists j \rangle}{\rightarrow} j, \mathrm{T}, \ i \stackrel{\langle \exists j \rangle}{\rightarrow} \mathrm{T}, j$$

and

$$T \xrightarrow{a} T, T,$$

where $i, j \in \{0, 1\}$ and $a \in \{\exists, \forall\} \times \{0, 1\}$.

The set $W_{0,1}$ is an example of set accepted by a **non-deterministic** tree automaton. The automaton has the states 0, 1 and T, works over the **alphabet** $\{\exists, \forall\} \times \{0, 1\}$ and has the following transitions:

$$i \stackrel{\langle \exists j \rangle}{\rightarrow} j, \mathrm{T}, i \stackrel{\langle \exists j \rangle}{\rightarrow} \mathrm{T}, j$$

and

$$T \xrightarrow{a} T, T,$$

where $i, j \in \{0, 1\}$ and $a \in \{\exists, \forall\} \times \{0, 1\}$.

The set $W_{0,1}$ is an example of set accepted by a **non-deterministic** tree automaton. The automaton has the states 0, 1 and T, works over the **alphabet** $\{\exists, \forall\} \times \{0, 1\}$ and has the following transitions:

$$i \stackrel{\langle \exists j \rangle}{\rightarrow} j, \mathrm{T}, \ i \stackrel{\langle \exists j \rangle}{\rightarrow} \mathrm{T}, j$$

and

$$T \xrightarrow{a} T, T,$$

where $i, j \in \{0, 1\}$ and $a \in \{\exists, \forall\} \times \{0, 1\}$.

The set $W_{0,1}$ is an example of set accepted by a **non-deterministic** tree automaton. The automaton has the states 0, 1 and T, works over the **alphabet** $\{\exists, \forall\} \times \{0, 1\}$ and has the following transitions:

$$i \stackrel{\langle \exists j \rangle}{\rightarrow} j, \mathrm{T}, \ i \stackrel{\langle \exists j \rangle}{\rightarrow} \mathrm{T}, j$$

and

$$T \xrightarrow{a} T, T,$$

where $i, j \in \{0, 1\}$ and $a \in \{\exists, \forall\} \times \{0, 1\}$.

The set $W_{0,1}$ is an example of set accepted by a **non-deterministic** tree automaton. The automaton has the states 0, 1 and T, works over the **alphabet** $\{\exists, \forall\} \times \{0, 1\}$ and has the following transitions:

 $i \stackrel{\langle \forall,j \rangle}{\rightarrow} j,j,$

$$i \stackrel{\langle \exists j \rangle}{\rightarrow} j, \mathrm{T}, \ i \stackrel{\langle \exists j \rangle}{\rightarrow} \mathrm{T}, j$$

and

$$T \xrightarrow{a} T, T,$$

where $i, j \in \{0, 1\}$ and $a \in \{\exists, \forall\} \times \{0, 1\}$.

The set $W_{0,1}$ is an example of set accepted by a **non-deterministic** tree automaton. The automaton has the states 0, 1 and T, works over the **alphabet** $\{\exists, \forall\} \times \{0, 1\}$ and has the following transitions:

 $i \stackrel{\langle \forall,j \rangle}{\rightarrow} j,j,$

$$i \stackrel{\langle \exists j \rangle}{\rightarrow} j, \mathrm{T}, \ i \stackrel{\langle \exists j \rangle}{\rightarrow} \mathrm{T}, j$$

and

 $T \xrightarrow{a} T, T,$

where $i, j \in \{0, 1\}$ and $a \in \{\exists, \forall\} \times \{0, 1\}$.

The set $W_{0,1}$ is an example of set accepted by a **non-deterministic** tree automaton. The automaton has the states 0, 1 and T, works over the **alphabet** $\{\exists, \forall\} \times \{0, 1\}$ and has the following transitions:

 $i \stackrel{\langle \forall,j \rangle}{\rightarrow} j,j,$

$$i \stackrel{\langle \exists j \rangle}{\rightarrow} j, \mathrm{T}, \ i \stackrel{\langle \exists j \rangle}{\rightarrow} \mathrm{T}, j$$

and

 $T \xrightarrow{a} T, T,$

where $i, j \in \{0, 1\}$ and $a \in \{\exists, \forall\} \times \{0, 1\}$.

The **rank** of the states 0 and T is 0 and the rank of the state 1 is 1. A tree $t \in S$ is **recognized** by the automaton if there exists a run of the automaton such that on every branch *x* of *t* the lim sup $\rho(x(n))$ is even (in our case the only possible even rank is 0). The set $W'_{0,1}$ is accepted by a very similar automaton, such that the roles of \exists and \forall are swapped and at the same time the roles of 0 and 1 are swapped.

The **rank** of the states 0 and T is 0 and the rank of the state 1 is 1. A tree $t \in S$ is **recognized** by the automaton if there exists a run of the automaton such that on every branch *x* of *t* the lim sup $\rho(x(n))$ is even (in our case the only possible even rank is 0). The set $W'_{0,1}$ is accepted by a very similar automaton, such that the roles of \exists and \forall are swapped and at the same time the roles of 0 and 1 are swapped.

The **rank** of the states 0 and T is 0 and the rank of the state 1 is 1. A tree $t \in S$ is **recognized** by the automaton if there exists a run of the automaton such that on every branch *x* of *t* the lim sup $\rho(x(n))$ is even (in our case the only possible even rank is 0). The set $W'_{0,1}$ is accepted by a very similar automaton, such that the roles of \exists and \forall are swapped and at the same time the roles of 0 and 1 are swapped.

An analogous definition gives sets $W_{i,k}$, $W'_{i,k}$ for larger sets of indices $\{i, \ldots, n\}$. One can prove, that the **complement of the set** $W_{0,1}$ is **not recognized** by an automaton with index $\{0, 1\}$ but is accepted by an automaton with index $\{1, 2\}$.

An analogous definition gives sets $W_{i,k}$, $W'_{i,k}$ for larger sets of indices $\{i, \ldots, n\}$. One can prove, that the **complement of the set** $W_{0,1}$ **is not recognized** by an automaton with index $\{0, 1\}$ but is accepted by an automaton with index $\{1, 2\}$.

< ロ > < 同 > < 回 >

An analogous definition gives sets $W_{i,k}$, $W'_{i,k}$ for larger sets of indices $\{i, \ldots, n\}$. One can prove, that the **complement of the set** $W_{0,1}$ **is not recognized** by an automaton with index $\{0, 1\}$ but is accepted by an automaton with index $\{1, 2\}$.

< ロ > < 同 > < 回 >

It was proved by M. O. Rabin, that every two disjoint sets of trees *A*, *B* accepted by automata with indices $\{1, 2\}$ is possible to separate by set *C*, which is simultaneously accepted by automata with indices $\{1, 2\}$ and $\{0, 1\}$.

For larger set of indices the question of separation remains open.

It was proved by M. O. Rabin, that every two disjoint sets of trees *A*, *B* accepted by automata with indices $\{1, 2\}$ is possible to separate by set *C*, which is simultaneously accepted by automata with indices $\{1, 2\}$ and $\{0, 1\}$.

For larger set of indices the question of separation remains open.

It was proved by M. O. Rabin, that every two disjoint sets of trees *A*, *B* accepted by automata with indices $\{1, 2\}$ is possible to separate by set *C*, which is simultaneously accepted by automata with indices $\{1, 2\}$ and $\{0, 1\}$.

For larger set of indices the question of separation remains open.

Bibliography I

Własności oddzielania zbiorów drzew definiowalnych przez automaty Master Thesis proported under supervision of D. Niwijacki

Master Thesis prepared under supervision of D. Niwiński, Institute of Informatics, University of Warsaw, **2008**.

A. S. Kechris

Classical Descriptive Set Theory. Graduate Texts in Mathematics **156**, Springer 1994.

S. Mazurkiewicz

Uber die Menge der differenzierbaren Funktionen. Fund. Math. **27** (1936), 244–249.

Borel, analytic and coanalytic sets Definition of a complete pair Basic examples of complete pairs A complete pair in the theory of automata

Bibliography II

M. O. Rabin.

Weakly definable relations and special automata. In: Mathematical Logic and Foundations of Set Theory, Y. Bar-Hillel ed., 1970, 1-23.

W. Thomas.

Languages, automata, and logic.

In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume 3, Springer-Verlag, 1997, pp. 389–455.

J. Saint Raymond

Complete pairs of coanalytic sets. Fund. Math. 194 (2007), 267–281.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >